Criteria Specification (CSpec) Registry is intended to provide access to the Criteria Specifications used and applied by ClinGen Variant Curation Expert Panels and biocurators in the classification of variants.
For general information about the ClinGen Expert Panels and Variant Curation please visit: Clinical Domain Working Groups. For specific inquiries regarding content correction or adding a new criteria specification refer to the Help page.
Should you encounter any issues regarding the data displayed, lack of functionality or other problems, please let us know by contacting us via email.
Criteria & Strength Specifications
|
||||
---|---|---|---|---|
PVS1 | ||||
Original ACMG Summary
Null variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where loss of function (LOF) is a known mechanism of disease.
Caveats: • Beware of genes where LOF is not a known disease mechanism (e.g. GFAP, MYH7). • Use caution interpreting LOF variants at the extreme 3’ end of a gene. • Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact. • Use caution in the presence of multiple transcripts. Stand Alone
Very Strong
Applied per PVS1 flowsheet of Abou Toyoun et al. Strong
Moderate
Supporting
Not Applicable
|
||||
PS1 | ||||
Original ACMG Summary
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change.
Example: Val->Leu caused by either G>C or G>T in the same codon. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Moderate
Supporting
Not Applicable
|
||||
PS2 | ||||
Original ACMG Summary
De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity. Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Supporting
Not Applicable
Comments:
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity
|
||||
PS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.
Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well-established. Stand Alone
Very Strong
Strong
Moderate
Supporting
Transporter assay showing loss of function Not Applicable
|
||||
PS4 | ||||
Original ACMG Summary
The prevalence of the variant in affected individuals is significantly increased compared to the prevalence in controls.
Note 1: Relative risk (RR) or odds ratio (OR), as obtained from case-control studies, is >5.0 and the confidence interval around the estimate of RR or OR does not include 1.0. See manuscript for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM1 | ||||
Original ACMG Summary
Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM2 | ||||
Original ACMG Summary
Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Caveat: Population data for indels may be poorly called by next generation sequencing. Stand Alone
Very Strong
Strong
Moderate
<0.00005 (<0.0050%) Supporting
Not Applicable
Comments:
MAF - ><0.00005 (0.0050%). Notes: Per SVI: Use a threshold an order of magnitude below BS1 threshold
|
||||
PM3 | ||||
Original ACMG Summary
For recessive disorders, detected in trans with a pathogenic variant
Note: This requires testing of parents (or offspring) to determine phase. Stand Alone
Very Strong
Strong
Moderate
Use per SVI guidance Supporting
Not Applicable
|
||||
PM4 | ||||
Original ACMG Summary
Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
Stand Alone
Very Strong
Strong
Moderate
Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants Supporting
Not Applicable
|
||||
PM5 | ||||
Original ACMG Summary
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before.
Example: Arg156His is pathogenic; now you observe Arg156Cys. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Moderate
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before Supporting
Not Applicable
|
||||
PM6 | ||||
Original ACMG Summary
Assumed de novo, but without confirmation of paternity and maternity.
Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Assumed de novo, but without confirmation of paternity and maternity Supporting
Not Applicable
|
||||
PP1 | ||||
Original ACMG Summary
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease.
Note: May be used as stronger evidence with increasing segregation data. Stand Alone
Very Strong
Strong
Moderate
Supporting
For segregation, an affected is defined as an individual who
Not Applicable
|
||||
PP2 | ||||
Original ACMG Summary
Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PP3 | ||||
Original ACMG Summary
Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively Not Applicable
|
||||
PP4 | ||||
Original ACMG Summary
Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Patient has/had MRI features of Leigh syndrome with clinical response to biotin/thiamine Not Applicable
|
||||
PP5 | ||||
Original ACMG Summary
Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BA1 | ||||
Original ACMG Summary
Allele frequency is above 5% in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.001 (0.1%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 100%, Penetrance - 100%
|
||||
BS1 | ||||
Original ACMG Summary
Allele frequency is greater than expected for disorder.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.0005 (0.050%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 50.4% [63/125 (c.1264A>G); PMID: 28696212], Penetrance - 100%
|
||||
BS2 | ||||
Original ACMG Summary
Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age.
Stand Alone
Very Strong
Strong
Observed in a healthy, untreated, adult individual in the homozygous state Moderate
Supporting
Not Applicable
|
||||
BS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Transporter assay showing no effect on the gene or gene product Not Applicable
|
||||
BS4 | ||||
Original ACMG Summary
Lack of segregation in affected members of a family.
Caveat: The presence of phenocopies for common phenotypes (i.e. cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation. Stand Alone
Very Strong
Strong
Lack of segregation in affected and/or treated members of a family. Moderate
Supporting
Not Applicable
|
||||
BP1 | ||||
Original ACMG Summary
Missense variant in a gene for which primarily truncating variants are known to cause disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BP2 | ||||
Original ACMG Summary
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder; or observed in cis with a pathogenic variant in any inheritance pattern Not Applicable
|
||||
BP3 | ||||
Original ACMG Summary
In frame-deletions/insertions in a repetitive region without a known function.
Stand Alone
Very Strong
Strong
Moderate
Supporting
In-frame deletions/insertions in a repetitive region without a known function Not Applicable
|
||||
BP4 | ||||
Original ACMG Summary
Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc)
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively Not Applicable
|
||||
BP5 | ||||
Original ACMG Summary
Variant found in a case with an alternate molecular basis for disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Variant found in a case with an alternate molecular basis for disease Not Applicable
|
||||
BP6 | ||||
Original ACMG Summary
Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BP7 | ||||
Original ACMG Summary
A synonymous variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved.
Stand Alone
Very Strong
Strong
Moderate
Supporting
A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved Not Applicable
|
Criteria & Strength Specifications
|
||||
---|---|---|---|---|
PVS1 | ||||
Original ACMG Summary
Null variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where loss of function (LOF) is a known mechanism of disease.
Caveats: • Beware of genes where LOF is not a known disease mechanism (e.g. GFAP, MYH7). • Use caution interpreting LOF variants at the extreme 3’ end of a gene. • Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact. • Use caution in the presence of multiple transcripts. Stand Alone
Very Strong
Applied per PVS1 flowsheet of Abou Toyoun et al. Strong
Moderate
Supporting
Not Applicable
|
||||
PS1 | ||||
Original ACMG Summary
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change.
Example: Val->Leu caused by either G>C or G>T in the same codon. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Moderate
Supporting
Not Applicable
|
||||
PS2 | ||||
Original ACMG Summary
De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity. Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Supporting
Not Applicable
Comments:
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity
|
||||
PS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.
Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well-established. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PS4 | ||||
Original ACMG Summary
The prevalence of the variant in affected individuals is significantly increased compared to the prevalence in controls.
Note 1: Relative risk (RR) or odds ratio (OR), as obtained from case-control studies, is >5.0 and the confidence interval around the estimate of RR or OR does not include 1.0. See manuscript for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM1 | ||||
Original ACMG Summary
Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation.
Stand Alone
Very Strong
Strong
Moderate
Located in one of the following functional domains:
Supporting
Not Applicable
|
||||
PM2 | ||||
Original ACMG Summary
Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Caveat: Population data for indels may be poorly called by next generation sequencing. Stand Alone
Very Strong
Strong
Moderate
0.0000092 (<0.00092%) Supporting
Not Applicable
Comments:
MAF - 0.0000092 (<0.00092%). Note: Per SVI: Use a threshold an order of magnitude
|
||||
PM3 | ||||
Original ACMG Summary
For recessive disorders, detected in trans with a pathogenic variant
Note: This requires testing of parents (or offspring) to determine phase. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM4 | ||||
Original ACMG Summary
Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
Stand Alone
Very Strong
Strong
Moderate
Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants Supporting
Not Applicable
|
||||
PM5 | ||||
Original ACMG Summary
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before.
Example: Arg156His is pathogenic; now you observe Arg156Cys. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Moderate
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before Supporting
Not Applicable
|
||||
PM6 | ||||
Original ACMG Summary
Assumed de novo, but without confirmation of paternity and maternity.
Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Assumed de novo, but without confirmation of paternity and maternity Supporting
Not Applicable
|
||||
PP1 | ||||
Original ACMG Summary
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease.
Note: May be used as stronger evidence with increasing segregation data. Stand Alone
Very Strong
Strong
Moderate
Supporting
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease Not Applicable
|
||||
PP2 | ||||
Original ACMG Summary
Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PP3 | ||||
Original ACMG Summary
Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively Not Applicable
|
||||
PP4 | ||||
Original ACMG Summary
Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology.
Stand Alone
Very Strong
Strong
Moderate
Supporting
One of the following criteria are met: (1) Pyruvate radioactive enzyme assay showing decreased (as defined as <3rd percentile of controls) for PDC, activated and decreased ratios (PDC/E3 and/or PDC/CS) in fibroblasts, muscle, and/or lymphocytes; (2) other assays showing decrease in PDC activity (ie: western blot, immunocapture, and activity; commercial kits for research); (3) abnormally high pyruvate and/or pyruvate/lactate ratio Not Applicable
|
||||
PP5 | ||||
Original ACMG Summary
Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BA1 | ||||
Original ACMG Summary
Allele frequency is above 5% in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.00092 (>0.092%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 100%, Penetrance - 100%. Notes Utilized biallelic inheritance in WARE calculator (monoallelic cut-off calculated out to even 1 occurrence in gnomAD meeting BA1 so utilized biallelic); for genetic heterogeneity, 84% was used (Patel et al., 2012; page 388)
|
||||
BS1 | ||||
Original ACMG Summary
Allele frequency is greater than expected for disorder.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >>0.00092 (>0.092%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 10% (Estimated; Patel et al., 2012 - Supp table, Penetrance - 100%.
|
||||
BS2 | ||||
Original ACMG Summary
Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age.
Stand Alone
Very Strong
Strong
Observed in at least two healthy male adults. Note: Individual’s phenotype is well-characterized (not just seen in database of presumed healthy individuals) AND/OR ≥16 hemizygotes in gnomAD Moderate
Supporting
Observed in 4-15 hemizygotes in gnomAD AND/OR Pyruvate radioactive enzyme assay showing normal (defined as >3rd percentile of controls) for PDC, activated and normal ratios (PDC/E3 and/or PDC/CS) in fibroblasts with no evidence of skewed X-inactivation in fibroblasts. Not Applicable
|
||||
BS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BS4 | ||||
Original ACMG Summary
Lack of segregation in affected members of a family.
Caveat: The presence of phenocopies for common phenotypes (i.e. cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation. Stand Alone
Very Strong
Strong
Lack of segregation in affected and/or treated members of a family. Moderate
Supporting
Not Applicable
|
||||
BP1 | ||||
Original ACMG Summary
Missense variant in a gene for which primarily truncating variants are known to cause disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BP2 | ||||
Original ACMG Summary
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BP3 | ||||
Original ACMG Summary
In frame-deletions/insertions in a repetitive region without a known function.
Stand Alone
Very Strong
Strong
Moderate
Supporting
In-frame deletions/insertions in a repetitive region without a known function Not Applicable
|
||||
BP4 | ||||
Original ACMG Summary
Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc)
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively Not Applicable
|
||||
BP5 | ||||
Original ACMG Summary
Variant found in a case with an alternate molecular basis for disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Variant found in a case with an alternate molecular basis for disease Not Applicable
|
||||
BP6 | ||||
Original ACMG Summary
Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BP7 | ||||
Original ACMG Summary
A synonymous variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved.
Stand Alone
Very Strong
Strong
Moderate
Supporting
A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved Not Applicable
|
Criteria & Strength Specifications
|
||||
---|---|---|---|---|
PVS1 | ||||
Original ACMG Summary
Null variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where loss of function (LOF) is a known mechanism of disease.
Caveats: • Beware of genes where LOF is not a known disease mechanism (e.g. GFAP, MYH7). • Use caution interpreting LOF variants at the extreme 3’ end of a gene. • Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact. • Use caution in the presence of multiple transcripts. Stand Alone
Very Strong
Applied per PVS1 flowsheet of Abou Toyoun et al. Strong
Moderate
Supporting
Not Applicable
|
||||
PS1 | ||||
Original ACMG Summary
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change.
Example: Val->Leu caused by either G>C or G>T in the same codon. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Moderate
Supporting
Not Applicable
|
||||
PS2 | ||||
Original ACMG Summary
De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity. Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Supporting
Not Applicable
Comments:
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity
|
||||
PS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.
Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well-established. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PS4 | ||||
Original ACMG Summary
The prevalence of the variant in affected individuals is significantly increased compared to the prevalence in controls.
Note 1: Relative risk (RR) or odds ratio (OR), as obtained from case-control studies, is >5.0 and the confidence interval around the estimate of RR or OR does not include 1.0. See manuscript for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence. Stand Alone
Very Strong
Strong
Rarely, pathogenic variants cause disease in an AD manner. For these variants only, presence in: 2 unrelated probands will be considered supporting evidence, 4 unrelated probands will be considered moderate evidence, 16 unrelated probands will be strong evidence.
Moderate
Supporting
Not Applicable
|
||||
PM1 | ||||
Original ACMG Summary
Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM2 | ||||
Original ACMG Summary
Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Caveat: Population data for indels may be poorly called by next generation sequencing. Stand Alone
Very Strong
Strong
Moderate
<0.0005 (<0.05% ) Supporting
Not Applicable
Comments:
Per SVI: Use a threshold an order of magnitude below BS1 threshold
|
||||
PM3 | ||||
Original ACMG Summary
For recessive disorders, detected in trans with a pathogenic variant
Note: This requires testing of parents (or offspring) to determine phase. Stand Alone
Very Strong
Strong
Moderate
Use per SVI guidance. Note: T251I and P587L are almost always in cis Supporting
Not Applicable
|
||||
PM4 | ||||
Original ACMG Summary
Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
Stand Alone
Very Strong
Strong
Moderate
Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants Supporting
Not Applicable
|
||||
PM5 | ||||
Original ACMG Summary
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before.
Example: Arg156His is pathogenic; now you observe Arg156Cys. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Moderate
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before Supporting
Not Applicable
|
||||
PM6 | ||||
Original ACMG Summary
Assumed de novo, but without confirmation of paternity and maternity.
Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Assumed de novo, but without confirmation of paternity and maternity Supporting
Not Applicable
|
||||
PP1 | ||||
Original ACMG Summary
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease.
Note: May be used as stronger evidence with increasing segregation data. Stand Alone
Very Strong
Strong
Moderate
Supporting
Further define “affected” as an individual in whom there is objective evidence of manifestations consistent with POLG-related disorders spectrum: Alpers-Huttenlocher syndrome (AHS), childhood myocerebrohepatopathy spectrum (MCHS), myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and/or progressive external ophthalmoplegia (PEO) Not Applicable
|
||||
PP2 | ||||
Original ACMG Summary
Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PP3 | ||||
Original ACMG Summary
Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
Agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively
Not Applicable
|
||||
PP4 | ||||
Original ACMG Summary
Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PP5 | ||||
Original ACMG Summary
Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BA1 | ||||
Original ACMG Summary
Allele frequency is above 5% in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.01(>1.0%), Prevalence - 1/10,000 (POLG Genereviews), Allelic Heterogeneity - 100%, Penetrance - 100%.
|
||||
BS1 | ||||
Original ACMG Summary
Allele frequency is greater than expected for disorder.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.005 (>0.5%), Prevalence - 1/10,000 , Allelic Heterogeneity - 50% (estimated), Penetrance - 100%.
|
||||
BS2 | ||||
Original ACMG Summary
Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age.
Stand Alone
Very Strong
Strong
Observed in a healthy adult individual in the homozygous state AND/OR Normal mtDNA content (1. Must be performed in muscle and/or liver; blood, fibroblast, and buccal not acceptable; 2. Must be performed in children only - defined as <18 years old; 3. A normal level is defined as >50%.) Moderate
Supporting
Lack of COX negative fibers in muscle (children and adults) Not Applicable
|
||||
BS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BS4 | ||||
Original ACMG Summary
Lack of segregation in affected members of a family.
Caveat: The presence of phenocopies for common phenotypes (i.e. cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation. Stand Alone
Very Strong
Strong
Lack of segregation in affected and/or treated members of a family. Moderate
Supporting
Not Applicable
|
||||
BP1 | ||||
Original ACMG Summary
Missense variant in a gene for which primarily truncating variants are known to cause disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BP2 | ||||
Original ACMG Summary
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern Not Applicable
|
||||
BP3 | ||||
Original ACMG Summary
In frame-deletions/insertions in a repetitive region without a known function.
Stand Alone
Very Strong
Strong
Moderate
Supporting
In-frame deletions/insertions in a repetitive region without a known function Not Applicable
|
||||
BP4 | ||||
Original ACMG Summary
Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc)
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
Agree to utilize REVEL, with thresholds of >0.75 and <0.15 for PP3 and BP4, respectively. Will also utilize POLG pathogenicity prediction server if/when live again (PMID: 28480171); both tools (REVEL and server) will have to be in agreement to score Not Applicable
|
||||
BP5 | ||||
Original ACMG Summary
Variant found in a case with an alternate molecular basis for disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Variant found in a case with an alternate molecular basis for disease Not Applicable
|
||||
BP6 | ||||
Original ACMG Summary
Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BP7 | ||||
Original ACMG Summary
A synonymous variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved.
Stand Alone
Very Strong
Strong
Moderate
Supporting
A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved Not Applicable
|
Criteria & Strength Specifications
|
||||
---|---|---|---|---|
PVS1 | ||||
Original ACMG Summary
Null variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation codon, single or multi-exon deletion) in a gene where loss of function (LOF) is a known mechanism of disease.
Caveats: • Beware of genes where LOF is not a known disease mechanism (e.g. GFAP, MYH7). • Use caution interpreting LOF variants at the extreme 3’ end of a gene. • Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the protein intact. • Use caution in the presence of multiple transcripts. Stand Alone
Very Strong
Applied per PVS1 flowsheet of Abou Toyoun et al. Strong
Moderate
Supporting
Not Applicable
|
||||
PS1 | ||||
Original ACMG Summary
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change.
Example: Val->Leu caused by either G>C or G>T in the same codon. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Moderate
Supporting
Not Applicable
|
||||
PS2 | ||||
Original ACMG Summary
De novo (both maternity and paternity confirmed) in a patient with the disease and no family history.
Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, etc. can contribute to non-maternity. Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Supporting
Not Applicable
|
||||
PS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product.
Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well-established. Stand Alone
Very Strong
Strong
Moderate
Supporting
Reduced ETHE1 persulfide dioxygenase Not Applicable
|
||||
PS4 | ||||
Original ACMG Summary
The prevalence of the variant in affected individuals is significantly increased compared to the prevalence in controls.
Note 1: Relative risk (RR) or odds ratio (OR), as obtained from case-control studies, is >5.0 and the confidence interval around the estimate of RR or OR does not include 1.0. See manuscript for detailed guidance. Note 2: In instances of very rare variants where case-control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence. Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM1 | ||||
Original ACMG Summary
Located in a mutational hot spot and/or critical and well-established functional domain (e.g. active site of an enzyme) without benign variation.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PM2 | ||||
Original ACMG Summary
Absent from controls (or at extremely low frequency if recessive) in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Caveat: Population data for indels may be poorly called by next generation sequencing. Stand Alone
Very Strong
Strong
Moderate
<0.00002 (<0.0020%) Supporting
Not Applicable
|
||||
PM3 | ||||
Original ACMG Summary
For recessive disorders, detected in trans with a pathogenic variant
Note: This requires testing of parents (or offspring) to determine phase. Stand Alone
Very Strong
Strong
Moderate
Use per SVI guidance Supporting
Not Applicable
|
||||
PM4 | ||||
Original ACMG Summary
Protein length changes due to in-frame deletions/insertions in a non-repeat region or stop-loss variants.
Stand Alone
Very Strong
Strong
Moderate
Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss variants Supporting
Not Applicable
|
||||
PM5 | ||||
Original ACMG Summary
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before.
Example: Arg156His is pathogenic; now you observe Arg156Cys. Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level. Stand Alone
Very Strong
Strong
Moderate
Novel missense change at an amino acid residue where a different missense change determined to be pathogenic has been seen before Supporting
Not Applicable
|
||||
PM6 | ||||
Original ACMG Summary
Assumed de novo, but without confirmation of paternity and maternity.
Stand Alone
Very Strong
Strong
De novo in a patient with the disease and no family history Moderate
Assumed de novo, but without confirmation of paternity and maternity Supporting
Not Applicable
|
||||
PP1 | ||||
Original ACMG Summary
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease.
Note: May be used as stronger evidence with increasing segregation data. Stand Alone
Very Strong
Strong
Moderate
Supporting
Co-segregation with disease in multiple affected family members in a gene definitively known to cause the disease Not Applicable
|
||||
PP2 | ||||
Original ACMG Summary
Missense variant in a gene that has a low rate of benign missense variation and where missense variants are a common mechanism of disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
PP3 | ||||
Original ACMG Summary
Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.).
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 f or PP3 and BP4, respectively Not Applicable
|
||||
PP4 | ||||
Original ACMG Summary
Patient’s phenotype or family history is highly specific for a disease with a single genetic etiology.
Stand Alone
Very Strong
Strong
Moderate
Individual has abnormally high urinary ethylmalonic acid AND one of the following: (1) All of the following symptoms present: -Acrocyanosis -Petechiae -Chronic diarrhea -Developmental delay (2) ≥3 or more of the following biochemical studies: -Abnormally high blood C4-Acylcarnitine esters -Abnormally high blood C5-acylcarnitine -Abnormally high plasma thiosulphate -Abnormally low cytochrome oxidase activity in skeletal muscle (without evidence of other complexes decreased) Supporting
Individual has abnoramlly high urinary ethylmalonic acid AND one of the following: (1) 3 of the following features present: -Acrocyanosis -Petechiae -Chronic diarrhea -Developmental delay (2) abnormal laboratory studies in 2 of the following biochemical studies: -Abnormally high blood C4-Acylcarnitine esters -Abnormally high blood C5-acylcarnitine -Abnormally high plasma thiosulphate -Abnormally low cytochrome oxidase activity in skeletal muscle, without evidence of other complexes decreased Not Applicable
|
||||
PP5 | ||||
Original ACMG Summary
Reputable source recently reports variant as pathogenic, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BA1 | ||||
Original ACMG Summary
Allele frequency is above 5% in Exome Sequencing Project, 1000 Genomes or Exome Aggregation Consortium.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.01(>1.0%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 100%, Penetrance - 100%.
|
||||
BS1 | ||||
Original ACMG Summary
Allele frequency is greater than expected for disorder.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
Comments:
MAF - >0.01(>1.0%), Prevalence - <1/1,000,000, Allelic Heterogeneity - 20% (estimated), Penetrance - 100%.
|
||||
BS2 | ||||
Original ACMG Summary
Observed in a healthy adult individual for a recessive (homozygous), dominant (heterozygous), or X-linked (hemizygous) disorder, with full penetrance expected at an early age.
Stand Alone
Very Strong
Strong
Observed in a healthy adult individual in the homozygous state Moderate
Supporting
Normal laboratory values (specific labs outlined in PP4) Not Applicable
|
||||
BS3 | ||||
Original ACMG Summary
Well-established in vitro or in vivo functional studies show no damaging effect on protein function or splicing.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BS4 | ||||
Original ACMG Summary
Lack of segregation in affected members of a family.
Caveat: The presence of phenocopies for common phenotypes (i.e. cancer, epilepsy) can mimic lack of segregation among affected individuals. Also, families may have more than one pathogenic variant contributing to an autosomal dominant disorder, further confounding an apparent lack of segregation. Stand Alone
Very Strong
Strong
Lack of segregation in affected and/or treated members of a family. Moderate
Supporting
Not Applicable
|
||||
BP1 | ||||
Original ACMG Summary
Missense variant in a gene for which primarily truncating variants are known to cause disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Not Applicable
|
||||
BP2 | ||||
Original ACMG Summary
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Observed in trans with a pathogenic variant for a fully penetrant dominant gene/disorder or observed in cis with a pathogenic variant in any inheritance pattern Not Applicable
|
||||
BP3 | ||||
Original ACMG Summary
In frame-deletions/insertions in a repetitive region without a known function.
Stand Alone
Very Strong
Strong
Moderate
Supporting
In-frame deletions/insertions in a repetitive region without a known function Not Applicable
|
||||
BP4 | ||||
Original ACMG Summary
Multiple lines of computational evidence suggest no impact on gene or gene product (conservation, evolutionary, splicing impact, etc)
Caveat: As many in silico algorithms use the same or very similar input for their predictions, each algorithm cannot be counted as an independent criterion. BP4 can be used only once in any evaluation of a variant. Stand Alone
Very Strong
Strong
Moderate
Supporting
No gene-specific predictors; agree to utilize REVEL, with thresholds of >0.75 and <0.15 f or PP3 and BP4, respectively Not Applicable
|
||||
BP5 | ||||
Original ACMG Summary
Variant found in a case with an alternate molecular basis for disease.
Stand Alone
Very Strong
Strong
Moderate
Supporting
Variant found in a case with an alternate molecular basis for disease Not Applicable
|
||||
BP6 | ||||
Original ACMG Summary
Reputable source recently reports variant as benign, but the evidence is not available to the laboratory to perform an independent evaluation.
Not Applicable
This criterion is not for use as recommended by the ClinGen Sequence Variant Interpretation VCEP Review Committee.
PubMed : 29543229
|
||||
BP7 | ||||
Original ACMG Summary
A synonymous variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved.
Stand Alone
Very Strong
Strong
Moderate
Supporting
A synonymous (silent) variant for which splicing prediction algorithms predict no impact to the splice consensus sequence nor the creation of a new splice site AND the nucleotide is not highly conserved Not Applicable
|
One Baylor Plaza, MS:BCM225 Suite 400D, Houston, TX, 77030
Questions or comments?